

Enabling Secure Ad-hoc Collaboration

Karlo Berket
Lawrence Berkeley National Laboratory

KBerket@lbl.gov

Deb Agarwal
Lawrence Berkeley National Laboratory

DAAgarwal@lbl.gov

Abstract

A secure collaboration environment should be designed to
support informal, spontaneous collaborations as well as
highly structured environments. Using on-line tools, it
should be easy to begin collaborating, and incrementally
add users and services as needed. Ideally, the
collaboration environment should not depend on any
specific resource or server; instead, the resources and
servers should add value to the system when they are
present. In this paper we describe an approach, built
upon secure and reliable multicast communication, that
leads to this ideal.

1. Introduction

Many current collaboration tools and environments,

such as the Access Grid (AG) [12] provide a set of
persistent services to users. However, they often rely on a
centralized infrastructure. For example, a user wishing to
join an AG venue must connect to a server in order to
participate in the collaboration. This architecture works
well for highly structured collaborations that can afford to
run and administer a highly-available server. However,
small collaborations are usually built in an ad-hoc manner
and often there is no site available to run the server.

At its core, a collaboration environment depends on
the collaborators: (1) being able to reliably communicate
with each other and (2) knowing the identities of the other
collaborators. When the collaboration is conducted over
an untrusted network, such as the Internet, security
becomes a critical concern. Providing security allows the
legitimate collaborators to feel confident about the
identities of their partners and securely communicate with
them. Although it is possible to establish the
communication among the collaborators using unicast
mechanisms (e.g. TCP/SSL), this is very complex,
inefficient, and difficult to scale. Instead, secure and

reliable multicast is a natural underlying communication
layer for a collaboration environment.

An instantiation of secure and reliable multicast
communication is provided by a combination of the
InterGroup protocols [6] and the Secure Group Layer
(SGL) [1]. InterGroup is an extension of the TCP concept
to the multi-party case that provides membership services,
reliable message delivery, and ordered message delivery.
The InterGroup protocols are designed to scale to wide-
area environments such as the Internet. SGL is an
extension of the SSL concept to the multi-party case that
provides the security services required by applications
utilizing reliable multicast communication (e.g.
InterGroup) in wide-area environments. SGL establishes
secure multicast channels among application components.
An SGL secure multicast communication channel is
established by first exchanging a session key among the
legitimate application components. This key is then used
to achieve multicast message confidentiality and/or
multicast data integrity within the group.

We provide two case studies of collaborative tools that
will make use of InterGroup and SGL as core
communication services in the collaboration environment.
One incorporates these communication services into its
design from the beginning. The other started out as a
server-based system that is migrating to using InterGroup
and SGL.

The first is scishare, [13] an information-sharing and
discovery system. Scishare enables scientists to store and
manage information on local storage facilities while
sharing it with remote participants. This system is
designed from the ground up as a collaboration tool built
upon the principal of secure ad-hoc collaboration.

The second is the Pervasive Collaborative Computing
Environment (PCCE). [3] The goal of the PCCE is to
provide collaboration tools that provide the feeling of
working together on an ad hoc or continuous basis. The
PCCE system currently relies on a server to coordinate
collaborator activities. This server keeps track of the set
of authorized users, the set of users currently participating
in the collaboration, and the tools available in the
environment. The current design forces users of PCCE to

rely on this server. PCCE is migrating to using an
InterGroup and SGL core for communication so that the
collaboration can operate without the server. By removing
the dependence on the server, PCCE gains the ability to
run in a purely ad-hoc manner. The PCCE server, if
present, will enhance the functionality of the
collaboration, rather than creating a (security) bottleneck.

The rest of this paper is laid out as follows. In Section
2 we take a closer look at the issues involved in enabling
secure ad-hoc collaboration and present solutions to some
of the arising problems. In Section 3 we present how
these solutions are being put into practice by examining
the scishare information sharing tool and the PCCE.
Finally, in Section 4 we make a number of concluding
remarks.

2. Discussion of Approach

In this section we examine the issues that arise in

enabling secure ad-hoc collaboration and present
solutions to some of these problems.

2.1. Secure Group Communication

As mentioned earlier, collaborators working in a

collaboration environment must be able to reliably
communicate with each other and know the identities of
the other collaborators. Many systems support secure
communication within a group using unicast mechanisms.
This is accomplished by using a server or overlay network
that relays messages to the members of a group. Another,
more efficient method is to use reliable multicast.

Unicast vs. multicast. In this section we examine the
advantages and disadvantages of solutions based on
unicast and reliable multicast mechanisms.

Unicast mechanisms have the advantage that the
existing network infrastructure supports unicast
communication in a ubiquitous manner. In addition,
developers are familiar with building applications and
services based on unicast. Unfortunately, in the group
setting, systems solely built upon unicast mechanisms
suffer from efficiency, manageability, scalability, and/or
fault-tolerance issues. Since messages are relayed within
the group using pure middleware or application-level
solutions latency is increased. Additionally, group
members may be called upon to contribute additional
resources, such as processing cycles in order to relay
messages within the group. Also, relaying messages
between participants in this manner raises further security
issues. [8]

Central server-based systems, such as the Access Grid
venue system, while easily manageable suffer from

having a single point of failure. Peer-to-peer overlay
networks, such as are used in Groove [9] are on the flip
side of this problem. They address fault-tolerance, but are
a management nightmare. Hybrid unicast solutions that
combine a server and the overlay network approach
(imagine Napster [9] with security) are tempting as they
appear to balance these trade-offs. Unfortunately, these
hybrids tend to inherit the problems of both types of
systems. Also, the combination of centralized and
decentralized security methods can lead to significant
management problems.

A solution using reliable multicast mechanisms can
provide better efficiency, fault-tolerance, and scalability
than those using unicast mechanisms, but it suffers from
two major disadvantages. First and foremost is the lack
of ubiquitous IP multicast infrastructure deployment.
Second, reliable multicast is unfamiliar to developers.

Our proposed solution to secure communication in a
group environment is through the combination of the
InterGroup protocols and the Secure Group Layer (SGL).

The InterGroup protocols build upon IP multicast
capabilities in the network to provide reliable multicast
mechanisms. They also include some additional
mechanisms to address the disadvantages of an IP
multicast-based approach.

Our architecture (Figure 1) allows participants that are
not IP multicast enabled to participate as equal peers in
the communication group.

Multicast

IG Node IG Node

IG Node IG Node

IG
Client

IG
Client

IG
Client

IG
Client

IG
Client

IG
Client

IG
Client

Figure 1. InterGroup architecture.

The InterGroup system consists of nodes and clients.

The nodes run the core of the InterGroup protocols and
communicate with each other using IP multicast. They
also serve as entry points into the system for clients. The
clients are light-weight processes that run on the
participant’s machine and provide the APIs for
communication within InterGroup. Note that even though
this architecture is hybrid, to the user, application
developer, and security layer it appears to be a pure
multicast.

The goal in designing the InterGroup protocols has
been to provide membership services, reliable message
delivery, and ordered message delivery to the application.
These services are typical of group communication
systems such as [4], [5], and [10]. The InterGroup
protocols are intended to provide these application
services in a wide-area environment with a large number
of participants, prone to large latencies and frequent
faults, such as the Internet. To accomplish this, they
introduce an unusual approach to handling group
membership, and support a receiver-oriented selection of
service to enhance scalability. The levels of the message
delivery service range from unreliable unordered to
reliable timestamp ordered.

InterGroup is designed to operate in an asynchronous
environment where no bound can be placed on the time
required for a computation or for communication of a
message. Processes may fail by stopping and taking no
further actions. The network is allowed to partition and
re-merge, and messages may be duplicated or reordered
by the network.

At this time, the node software is implemented in Java,
and clients in C++, Java and Python (as a wrapper to
C++) are available.

Security. The Secure Group Layer (SGL) provides the
collaborative application with a security context within
which messages multicast over the wire can be
cryptographically protected. The essential building block
for setting up a secure multicast context is a distributed
key exchange protocol that allows the participants to
exchange a session key as equals and, therefore, treats
them as peers. The first step in solving this problem was
to design an algorithm that allows a set of participants to
agree on a session key. [7] We refer to this kind of group
genesis as the initial group Diffie-Hellman key exchange.
Alone the group Diffie-Hellman key exchange is of
relatively little practical use. A mechanism to enforce
restrictions on who can participate in the key exchange
and, therefore, the multicast group is needed. SGL
integrates the Diffie-Hellman key exchange and access
control mechanisms into a security layer.

SGL secures InterGroup in much the same way that
the Secure Socket Layer Protocol (SSL/TLS) secures

TCP. The approach is to interpose a security layer
between the application and the transport layer protocol.
This protocol is easy to deploy since it only requires
minor changes in the application to convey the users'
identity information and access privileges. SGL leverages
off the properties of the underlying transport in
transmitting its own messages. Because of this, SGL uses
the same APIs as InterGroup, with the addition of some
initial setting up of security parameters. These APIs have
been developed for ease of use. The number of classes
and methods has been kept to a minimum and the APIs
mirror those of modern object-oriented datagram sockets
as much as possible.

At this time, implementation of SGL is underway.

2.2. Authentication and Authorization

The Secure Group Layer provides the basic

mechanism required to secure the group communication
channel but it is only part of the final solution required.
In an ad hoc environment, authentication and
authorization are difficult problems. Most of the
authentication and authorization systems available today
depend on a central database of credentials and
authorization policies. In an ad hoc environment this
centralized database is not necessarily available.

The simplest means of dealing with ad hoc
environments is for the group to use a shared secret to
establish a session but this will not work in many
situations and does not scale well. Another approach
would be to have each member of the collaboration
maintain their own authentication and authorization list
containing the other members of the collaboration. This,
however, is difficult to maintain and it is very easy to end
up with a situation where the lists are inconsistent and
none of the collaboration members can join the
collaboration.

A likely solution will be the combination of a
centralized database, a local version of the central
database, and real-time authorization interfaces. With this
combination, the local database might be consulted first,
then central database next, and then the user would be
directly queried if the first two methods failed. This
combination of mechanisms would allow the user to
incrementally build up the local database by storing each
decision in the database for future use in authorization
decisions. We plan to use our collaborative tools to
investigate effective authentication and authorization
structures for the ad hoc collaboration environment.

3. Case Studies

We now look at how our proposed solutions for

enabling secure ad-hoc collaboration are being adopted in
two projects. The first is scishare, an information sharing
tool designed for dynamic groups of collaborators. The
second is the Pervasive Collaborative Computing
Environment (PCCE).

3.1. Scishare

In this section, we present an overview of scishare and

the approach taken to enable secure ad-hoc collaboration
within the context of this tool.

Groups collaborating on scientific experiments have a
need to share information and data. This information and
data is often represented in the form of files and database
entries. In a typical scientific collaboration, there are
many different locations where data would naturally be
stored. This makes it difficult for collaborators to find and
access the information they need. The goal of scishare is
to create a lightweight information-sharing system that
makes it easy for collaborators to find and use the data
they need. This system must be easy-to-use, easy-to-
administer, and secure.

The scishare information sharing tool is in many ways
similar to existing peer-to-peer file sharing systems, such
as Gnutella [9], Kazaa [14], Limewire [15], etc. Each
peer designates a set of items to share within the system.
Peers are able to search for items by sending a query to
the network. The network delivers this query to the other
peers, which run the query against the items they have
designated to share. Metadata about the matching items is
sent back to the peer that originated the query. This
metadata contains information about the items, as well as
how the actual items may be retrieved. Then the peer
may go ahead and retrieve the item.

As part of our design, we allow for easy configuration
of the message exchange patterns of the system.
Currently, we use the InterGroup protocols to reliably
deliver each query to all of the current participants in a
scalable manner, without having to discover all of their
identities. The transfer of the metadata and items is done
using HTTP. Just as easily, we could transfer the
metadata using the InterGroup protocols. We plan to
make use of this configurability to perform measurements
on the performance and resource consumption of different
message exchange patterns.

In our design we also separated the application-
specific requirements of information sharing from the
more generic discovery mechanisms. We hope to advance
and reuse the discovery component in other projects.

 The prototype implementation of scishare is a Java
application with a graphical front-end. It provides the
user the ability to search for remote files (Figure 2), to
transfer those files to the local machine, to manage the
locally shared files, and the ability to save and restore the
state of the application.

Figure 2. Performing a search in the scishare
application.

The initial prototype of scishare sends queries and

receives responses from a group of remote machines. The
metadata in the responses describes the files, as well as
the service required to retrieve them. The application
uses the information in the response to transfer the file to
the local machine.

We are currently in the process of incrementally
adding security to scishare. We first use the concept of
interposing a security layer between the application and
the transport layer protocol in order to secure the
communication. This means we will be using HTTPS
instead of HTTP an SGL instead of InterGroup. Our
design allows us to do this with little impact on the
existing application code. Once complete, this will
provide confidentiality, integrity, authenticity, and
implicit authorization enforcement for the peer
communication.

The next step is to tackle the issue of access control to
the other resources, e.g. files. Our system will allow for
individual peers to use the authorization services of their
choice. The implementation that we provide will make
use of Akenti distributed authorization [11] for this
service. Akenti targets widely distributed environments
where resource owners and users could span many
autonomous organizations. It provides a powerful
authorization policy language the enables fine-grained
access control to resource in dynamic collaborations such
as ours.

3.2. PCCE Secure Messaging

In this section, we present an overview of the

PCCESecureMessaging tool and the approach we are

taking to enable secure ad-hoc collaboration within the
context of this tool.

Collaborators have a need for a non obtrusive,
lightweight, secure, and easy to use means of staying in
contact with each other. Messaging applications have
been found to be an effective tool for providing this
collaboration contact. To this end, the PCCE project is
developing a secure messaging application to support
synchronous and asynchronous messaging. With our
application users can hold group or one-to-one
conversations on an on-going or ad hoc basis. These
conversations may be public and open to anyone who is
on-line or they may be private and open only by
invitation. Although several messaging applications
already existed, they do not incorporate asynchronous
mechanisms and security. Our approach was to search for
the open source messaging application as close to our
needs as possible and modify it to add the necessary
features.

The current implementation PCCESecureMessaging
application is based on a client-server model that supports
client and server authentication and encryption of
messages exchanged over the network. In order to
leverage existing technologies, we modified a public
domain IRC server (IRCD hybrid [16]) to replace its non
secure TCP sockets with SSL connections. To provide
persistence (e.g., unique nicknames and permanent
channels) and enhanced presence information
independent of any one environment, we developed a
custom PCCE server which also provides authentication
and authorization services. Both the IRC and PCCE
servers use SSL network connections and X.509
credentials which they present to each other and to clients.

Figure 3. PCCE Secure Messaging Client

A view of the application is shown in Figure 3.
To access the servers, users must pre-register with the

PCCE server with their username and password and
certificate if they have one. Subsequent logins can be by
either certificate or username and password. The PCCE
server stores registration information in a local database
and uses the information to make authorization decisions
(e.g., who can connect to the IRC server, who can leave
and receive notes, and who can perform administrative
operations).

This current design forces users to rely on the PCCE
and IRCD server to operate. This architecture presents a
single point of failure for the system and impedes
scalability. It also makes it difficult to quickly use the
tool to support ad hoc collaborations.

We plan to convert the PCCESecureMessaging
application to use InterGroup and SGL for messages on
the channels and persistence information. This will allow
it to operate without the PCCE and IRCD servers. By
removing the dependence on these servers,
PCCESecureMessaging will gain the ability to run in a
purely ad hoc manner. The PCCE server, if present, is
still valuable since it will enhance the functionality of the
collaboration by providing persistence. The IRC server
can be removed completely or used as an alternate means
of connecting in participants that are not multicast
capable. As we change to the group communication
mechanisms we will also begin to investigate models for
doing distributed authentication and authorization.

We are currently in the process of enhancing the
PCCESecureMessaging application and extending the
security architecture to allow incremental trust of users
[2]. When we begin to integrate the InterGroup and SGL
capabilities, the added dimension the group
communication mechanisms will bring to the model will
need to be considered.

4. Conclusion

By using InterGroup and SGL as core communication

services in the collaboration environment, existing
collaborations can easily operate in either an ad hoc or
infrastructure-enabled setting without sacrificing security.
This allows servers to provide added value services rather
than being essential components. Thus, the dependence
on centralized infrastructure is reduced and informal,
spontaneous collaborations are enabled.

We have shown examples of two collaboration tools
using these communication services. One, scishare, was
designed with these services in mind. The other, PCCE,
started out using a client-server model and is now
adapting to using InterGroup and SGL as core
communication services.

5. Acknowledgments

This work was supported by the Director, Office of

Science, Office of Advanced Computing Research,
Mathematical Information and Computing Sciences
Division, of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. This document is
report LBNL Report number LBNL-52895.

6. References

[1] D.A. Agarwal, O. Chevassut, M.R. Thompson, G. Tsudik,

“An Integrated Solution for Secure Group Communication in
Wide-Area Networks”, Proceedings of the 6th IEEE
Symposium on Computers and Communications, Hammamet,
Tunisia, July 3-5, 2001, pp 22-28.

[2] D. Agarwal, M. Lorch, M. Thompson, M. Perry, "A New
Security Model for Collaborative Environments",
Proceedings of the Workshop on Advanced Collaborative
Environments, Seattle, WA, June 2003.

[3] D. Agarwal, C. McParland, M. Perry, “Supporting
Collaborative Computing and Interaction”, Proceedings of
the Grace Hopper Celebration of Women in Computing 2002
Conference, Vancouver, Canada, October 9-12, 2002.

[4] D.A. Agarwal, L.E. Moser, P.M. Melliar-Smith, R.K.
Budhia, “The Totem Multiple-Ring Ordering and Topology
Maintenance Protocol”, ACM Transactions on Computer
Systems, Vol. 16(2), May 1998, pp. 93-132.

[5] Y. Amir, C. Danilov, J. Stanton, “A Low Latency, Loss
Tolerant Architecture and Protocol for Wide Area Group
Communication”, Proceeding of International Conference
on Dependable Systems and Networks (FTCS-30, DCCA-8),
New York, NY, June 25-28 2000.

[6] K.Berket, D.A. Agarwal, O. Chevassut, “A Practical
Approach to the InterGroup Protocols”, Future Generation
Computer Systems, Vol. 18 (5), Elsevier Science B.V., 2002,
pp. 709-719.

[7] O. Chevassut, “Authenticated Group Diffie-Hellman Key
Exchange: Theory and Practice”, PhD Dissertation,
Universite Catholique de Louvain, Belgium, October 2002.

[8] M. O’Neill, et al., Web Services Security, McGraw-
Hill/Osborne, Berkeley, CA, 2003.

[9] A. Oram, editor, Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, O’Reilly & Associates, Inc.,
Sebastopol, CA, 2001.

[10] R. van Renesse, K.P. Birman, S. Maffeis, “A High
Performance Totally Ordered Protocol”, Proceedings of the
International Workshop on Theory and Practice in
Distributed Systems, Springer-Verlag, Dagstuhl Castle,
Germany, September 1994, pp. 33-57.

[11] M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based
Authorization Policy in a PKI Environment”, to appear in
ACM Transactions on Information and System Security.

[12] “Access Grid”, http://www.accessgrid.org/.
[13] “A Scalable and Secure Peer-to-Peer Information Sharing

Tool”, http://www-itg.lbl.gov/P2P/file-share/.

[14] “Kazaa Media Desktop”, http://www.kazaa.com.
[15] “Limewire: The Most Sophisticated File-Sharing

Application”, http://www.limewire.com.
[16] ftp://ftp.blackened.com/pub/irc/ircservers /hybrid/old/

